
Dungeon: A Case Study of Feature-Oriented Programming with
Virtual Classes

Vaidas Gasiunas Ivica Aracic
Technische Universität Darmstadt, Germany

{gasiunas,aracic}@informatik.tu-darmstadt.de

Abstract
A feature is a logically cohesive piece of functionality and is
present in all phases of software development. Thus, it is nat-
ural to expect that modularization of software into features
can provide a lot advantages. This paper presents a Dun-
geon case study, which evaluates feature-oriented program-
ming (FOP) using virtual classes and propagating mixin
composition that are available in the CAESARJ program-
ming language. We describe the techniques for feature sep-
aration with virtual classes, the process of deriving feature-
oriented design from requirements and a gradual refactoring
of object-oriented programs to a feature oriented design. Be-
sides, reconfirming the already known advantages of FOP
for extensibility and reuse, we also evaluate if FOP in gen-
eral leads to a better design than OOP and how well it is
supported by CAESARJ tools.

1. Introduction
Feature-oriented programming (FOP) emerged from the
work of Prehofer [14] and the work on GenVoca [7]. The
main idea of FOP is that by modularizing software into fea-
tures we can achieve better extensibility and reusability. FOP
is especially useful in the context of the product line devel-
opment [16, 17, 5], because it allows to separate the features
that are common for most of products of a product line from
the features that vary from product to product.

Typical implementations of the GenVoca model [15, 6]
are based on a layered design: each feature corresponds to a
layer, which consists of a set of partial definitions of classes
that implement the feature. Concrete programs are then gen-
erated by composing such layers. Using mixin layers it is
also possible to decompose methods: slices of the imple-
mentation of a method can be distributed into multiple layers
and combined using the semantics of super calls. The name
clashes that occur during merging are resolved by the com-
position order of the layers, i.e. the methods of a layer over-
ride the corresponding methods of the layers that are further
in the composition. In this way, it can be achieved that more
specific features override the functionality of more general
features.

An advantage of the AHEAD system is that it is not
bound to a particular programming language and can even
be applied to decompose non-code artifacts into features.
For example, FeatureC++[2, 1] combines AHEAD with an
aspect-oriented language and in this way enables expression
of behavioral crosscutting in the feature modules.

Layered decomposition is also possible in languages sup-
porting virtual classes and mixin composition, e.g. gbeta
[10], CAESARJ [3]. The composition semantics of these
approaches also supports overriding and composition of
method implementations. Virtual classes provide an appro-
priate type system to express relationships between layers
and their refinements. This enables modular type checking
of the layers. Abstract virtual classes of CAESARJ enable
definition of interfaces for feature modules. In this way it
is possible to separate the implementations of different fea-
tures at the level of segregated interfaces. Besides, virtual
classes support coexistence of multiple different combina-
tions of feature modules within the same program and their
dynamic instantiation.

This paper presents the Dungeon game case study, the
goal of which was to evaluate feature-oriented programming
with CAESARJ using virtual classes and propagating mixin
composition. Besides confirming the already known advan-
tages of FOP for extensibility and reuse in the context of
product lines, we also wanted to evaluate if FOP leads to a
better modularization than OOP in general.

There are multiple reasons why this should be the case.
Since features are units of end-value of software to the user,
features are present in most of stages of software develop-
ment: analysis, development, testing and maintenance [18].
Therefore, feature-oriented modularization of software can
reduce the mismatch between specification and implemen-
tation and provide a better support for independent devel-
opment and testing. Since software is usually extended by
adding new features or enhancing the existing ones, the pos-
sibility to define features in separate modules can provide an
advantage for software maintenance. Besides, feature-driven
development [13] emphasizes advantages of organizing soft-
ware development around features. However, for implemen-
tation it uses conventional object-oriented programming lan-

1 2007/9/15

guages. This leads to a mismatch between the code modules
and project’s organizational units.

It must also be noted that product lines are seldom devel-
oped from scratch. Instead, they usually emerge from sep-
arate projects and products during the continuous process
of reuse maximization. It is also difficult to draw a strict
line between the cases when we speak about a product line
and when we speak about simple reuse of components and
libraries. Thus, it may be useful to start using FOP from
the very beginning for development of invidual projects and
products in order to support continuous transition to a prod-
uct line.

The remainder of the paper is organized as follows. In
Sec. 2 we give an introduction to the example of the case
study. Sec. 3 explains the techniques of feature separation
with virtual classes and propagating mixin composition.
Sec. 4 describes an approach of feature identification from a
requirements specification and a process of a gradual refac-
toring from an object-oriented to a feature-oriented design.
We evaluate the results of the case study in Sec. 5 and con-
clude in Sec. 6.

2. Dungeon Case Study
Dungeon is a typical 2D real-time game with a map filled
with moving creatures, collectable items and traps. One of
the creatures is controlled by the player; the others are con-
trolled by the artificial intelligence (AI). There are multiple
AI strategies for movement and battle. Creatures may carry
various items, such as weapons, armor, potions and gold.
The player can manage and use its items in the inventory
window. Items can also be traded to the merchant.

The domain of computer games was selected, because it
is a typical domain for object-orientation. Most of the ap-
plication state and functionality is organized around game
objects: they are manipulated, simulated and rendered. Nu-
merous variations, such as item types and battle strategies,
are typical cases for inheritance and polymorphism. It was
interesting to investigate if CAESARJ can further improve
the design of such typical object-oriented applications.

Before starting with CAESARJ design, first we imple-
mented the game functionality in pure Java. According to
the idea of object-orientation the code of the game was
modularized around object types: various game objects (e.g.
world, creature, room, map, item), user interface elements
(e.g. game window, inventory window), algorithms (e.g. path
finding, enemy selection). The object-oriented design did
not, however, achieve complete separation features and lead
to large sets of interdependent modules, because of follow-
ing reasons. First, a lot of the game world classes are shared
by different features. For example, almost every feature adds
some new state and operations to the classes Creature and
World. Thus, in order to separate the features from each other,
we need static crosscutting [12]. Besides, we also found that
there is a set of points in program execution, where the be-

havior of multiple features is tangled. The typical join points
are execution of the simulation steps of the world objects
that are shared by multiple features, rendering of these ob-
jects, resource loading and reaction to the user input.

3. Modularization of Features with Virtual
Classes

We address the problem of feature separation by employing
CAESARJ’s virtual classes and mixin composition [3]. The
main idea behind virtual classes is that overriding and late
binding should also apply to inner classes. This means that,
similarly to a late-bound (virtual) method, the behavior of a
virtual class can be redefined in any subclass of the enclosing
class.

In CAESARJ each feature is modeled by a top-level class,
while domain objects are modeled by their virtual classes.
We will refer to such top-level classes as feature classes. De-
pendencies between features are modeled by inheritance re-
lationships between the corresponding feature classes. Since
virtual classes can be overridden in subclasses, a feature
class can extend and override functionality of the domain
objects inherited from other feature classes.

Figure 1 demonstrates an example of feature modular-
ization with virtual classes. Class FCreature1 implements the
base functionality of game creatures. It defines that the game
world consists of multiple creatures, each creature is located
at certain coordinates and that update of the game world in-
volves update of all its creatures. It introduces class Creature
and refines class World, which is inherited from the feature
class FWorld. The method Creature.update is empty and in-
tended to be extended by more specific feature classes.

Classes FMovement, FAttack implement correspondingly
the movement and the attack functionality for creatures.
They inherit from FCreature and refine Creature with new
attributes and operations that are necessary to implement
movement and attack. The class FMovementAnimation refines
the feature FMovement further with the functionality to ani-
mate movement cycles.

In general a feature class inherits from another feature
class in order to use or to override its functionality. Since
a feature may need functionality of multiple features it is
important to have some form of multiple inheritance in the
language. For example, feature class FChase, which imple-
ments the functionality to chase the target enemy, requires
both the movement and the attack functionality, so it must in-
herit from both FMovement and FAttack. The inherited classes
are composed by so called propagating mixin composition:
it is a kind of multiple inheritance mechanism, which re-
cursively combines all members of participating hierarchies.
Its implementation is based on the work in [11], which uses

1 We prefix the names of all feature classes with the letter F and use keyword
cclass to declare classes with CAESARJ specific semantics. Keyword class
is reserved for standard Java classes.

2 2007/9/15

1 cclass FWorld {
2 cclass World {
3 void update(float dTime) { }
4 }
5 }
6 cclass FCreature extends FWorld {
7 cclass Creature {
8 World world;
9 float x, y; int heading;

10 void update(float dTime) { }
11 ...
12 }
13 cclass World {
14 Player player ;
15 Collection creatures = new LinkedList ();
16 void update(float dTime) {
17 super.update(dTime);
18 updateCreatures (dTime);
19 }
20 void updateCreatures (float dTime) {
21 for (Iterator it = creatures (); it .hasNext ();) {
22 Creature creat = (Creature) it . next ();
23 creat .update(dTime);
24 }
25 }
26 ...
27 }
28 }
29 cclass FMovement extends FCreature & FPathFinding {
30 cclass Creature {
31 boolean moving;
32 float targetX , targetY ;
33 MovementStrategy movementStrategy;
34 void updateMovement(float dTime) { ... }
35 void update(float dTime) {
36 super.update(dTime);
37 updateMovement(dTime);
38 }
39 ...
40 }
41 abstract cclass MovementStrategy { ... }
42 ...
43 }
44 cclass FAttack extends FCreature {
45 cclass Creature {
46 Creature enemy;
47 void update(float dTime) {
48 super.update(dTime);
49 updateAttack ();
50 }
51 ...
52 }
53 }
54 cclass FMovementAnimation extends FMovement {
55 cclass Creature {
56 int walkCycles; float walkCycleSpeed;
57 void update(float dTime) {
58 super.update(dTime);
59 if (moving) { updateWalkCycle(); }
60 }
61 ...
62 }
63 }
64 cclass FChase extends FAttack & FMovement { ... }

Figure 1. Modularization of features with virtual classes

mixins [8] and C3 inheritance linearization [4] as the under-
lying concept.

Inheritance linearization is a common mechanism to re-
duce a multiple-inheritance graph to an ordered list, so that
the order of the elements in the list determines the behav-
ior in a case of ambiguity. The C3 algorithm is a topolog-
ical sort of a multi-inheritance graph with additional rules
that make the linearization unambiguous and enforce some

desirable properties of the result (see [4]). E.g., the C3 lin-
earization of FAttack & FMovement would produce the linear
list [FAttack, FMovement, FCreature, FPathFinding, FWorld]. Note
that each class is inherited only once, even if it is inherited
over different inheritance paths. The linearization defines the
overriding order of inherited methods and the order of com-
position of the virtual classes.

An application is defined as a feature class that inherits
from the classes of all other features that must be available
in the application.

Mixin composition semantics enables definition of com-
posable methods. For example, Creature in FCreature defines
method update, which is refined in FMovement, FAttack and
FMovementAnimation. Each refinement contributes some new
functionality and calls the super version of update. When the
classes are composed and linearized, the method overrid-
ing as well as super calls follow the linearization order, so
when Creature.update is called somewhere in the application
all available refinements of the method are called in the order
determined by the linearization.

4. Process of Feature-Oriented Design
Although we had a clear understanding how to modularize
features using virtual classes and mixin composition, it was
still not clear what features we should modularize and how
we could efficiently refactor an object-oriented design to a
feature-oriented one.

Since there is a correspondence between features and re-
quirements, it was natural to look for features in the func-
tional specification of the game. For this purpose, we mod-
ularized the requirements by the criteria similar to the ones
formulated in [9].2 The requirements that bring useful func-
tionality only together were identified as features, and the
specification itself was restructured so that features were
described in separate sections. The sections were further
grouped into chapters, which then represented the major fea-
ture groups.

Further, we identified logical dependencies between fea-
tures, by studying their descriptions and looking for refer-
ences to the concepts or facts that were introduced in the
descriptions other features. Undesired dependencies were
eliminated by decomposing requirement statements into
smaller ones and moving one from one feature to another.
It is important to note that we only restructured the spec-
ification, but did not change its meaning in any way. The
dependency analysis was performed hierarchically. First, we
determined dependencies between the feature groups, repre-
sented by chapters and then analyzed dependencies between
the sections inside chapter as well as their external depen-
dencies.

Once we established the desired modularization of the
requirements, it served as a plan for the refactoring to the

2 Our concept of feature is close to the concept of requirements module in
this paper.

3 2007/9/15

feature-oriented design. The goal was to modularize the
game so that the feature classes and their grouping into
packages correspond to the structure of the functional re-
quirements (i.e. the sections and subsections of the speci-
fication) as much as possible. A dependency between two
feature modules should exist only if there is a logical depen-
dency between the requirements describing these features.

Another challenge was organization of the refactoring
process. Our goal was to divide the refactoring process into
small steps, so that after each step we have a program that
can be compiled and tested. Such process not only signif-
icantly reduces the complexity of the task, but also allows
to organize refactoring as a process of continuous improve-
ment, what is very important in product development. So we
divided the refactoring process into following steps:

• In the first step the Java classes are transformed to CAE-
SARJ classes. This transformation step is rather mechani-
cal, but the biggest problem here is that CAESARJ classes
cannot be defined as subclasses of regular Java classes,
thus inheritance from the Java classes that are outside the
refactoring scope must be replaced by delegation.

• Then for each package in the refactoring scope a CAE-
SARJ class is created and the classes of that package
are inserted as inner classes of the class representing
the package. The dependences between packages are
modeled as inheritance relationships between the cor-
responding classes. In this step cyclic dependences be-
tween packages must be broken. This can be achieved by
inserting abstract declarations. For example, if classes of
package A use classes of package B, and also the other
way around, then we can declare class B as subclass of
class A, and include in class A abstract declarations of all
classes and operations from package B that are necessary
for A.

• Define an application (or the refactored part of it) as a
mixin composition of the package classes that are leaves
of the inheritance hierarchy.

• Extract one by one all the identified features, starting
from the root nodes of the feature dependency graph and
gradually going down.

It can be difficult to extract a feature, because its code
is often scattered in the application. Furthermore, there is
a lot of code, which does not implement any externally
visible effects of the feature, but rather contributes to the
implementation of the feature indirectly. So we elaborated a
process, which employs the compiler and a source control
system in order to achieve a clean separation of a feature:

• Use a source control system to save the version of the
application before feature extraction.

• Locate all the code that belongs to the feature, and re-
move it. This can be done by starting with the core fea-

Figure 2. Dependencies between top-level feature groups.

ture code and subsequently removing code that causes
compilation errors due to the missing feature.

• Test the application without the feature. Watch for func-
tionality that does not make sense without the feature and
remove it too.

• Now compare the current version (without the feature) to
the latest repository version. This comparison shows the
differences between both versions, which is exactly the
code of our feature.

• Create a new CAESARJ class, dedicated to the feature,
and reimplement the feature by copying code from the
repository into this class. This class like package classes
consists of multiple virtual classes implementing the fea-
ture.

• If the feature requires functionality of other features (or
unrefactored packages), corresponding inheritance rela-
tionships must be added between the class of the feature
and the classes of the features it depends upon.

• Combine the feature class with other feature (and pack-
age) classes and test the combined application.

• Analyze if the feature class depends only on more general
features. If it is not the case, define an abstract class that
captures the interface of the dependency and inherit from
this abstract class instead of inheriting from the concrete
feature.

5. Results
The diagram in Fig. 2 presents the top level view on the iden-
tified Dungeon features. The blocks in the diagram corre-
spond to top level feature groups and dependencies between
them. These groups consist of multiple features that corre-
spond to more fine-grained pieces of functionality. When
analyzing the shared functionality between observable fea-
tures, we identified that most of the internal features fall into
four categories: data model features, simulation features,

4 2007/9/15

rendering features and control features. The dependencies
between the features of these categories follow a consistent
pattern: simulation depends on data model, while rendering
and control depends on data model and simulation. These
four categories formed the second level of feature grouping
inside the top level feature groups in Fig. 2.

In the CAESARJ implementation of the game, the pack-
age structure reflects the described feature grouping struc-
ture. The classes in the packages correspond to the identified
features, and the actual game objects are described by virtual
classes of the feature classes.3

Reuse. In order to test the quality of our modularization,
we combined the features into multiple different versions
of the game. For example, for each feature group in Fig. 2
we could derive a combination that consisted of this feature
group and the feature groups it depends upon. In this way we
could build a game with battle, but without items and traps,
with items, but without inventory management and trade and
so on. Besides, the possibility to switch off certain features
makes it possible to replace them with alternative ones.

Extensibility. We have tested the extensibility of the new
design by trying to extend the game with new functional-
ity. The Traps feature group was created as a result of this
experiment. Traps can be placed on the map, if a creature
runs over it, then it takes damage. This extension has been
implemented in a modular way by providing new feature
classes that depend on the functionality of the feature groups
Map and Creatures. The extension could be added without
any change to the existing modules. The class representing a
room was overridden to keep a list of the traps in the room.
Rendering and simulation functionality was extended with
trap rendering and simulation by overriding corresponding
methods.

Size. In order to compare the size and complexity of the
object-oriented and feature-oriented versions of the game,
we computed the lines of code of the source code without
the blank and comment lines. We also excluded the code for
testing, which is much larger in feature-oriented design, be-
cause we tested various variants of the game. The result was
3,984 lines for the OO version and 4,989 for the FO version.4

So, refactoring to the feature-oriented design produced an in-
crease in size of about 25%. This increase was mainly caused
by the finer granularity of the decomposition into classes and
methods in the FO design.

Complexity. The OO version of the game contains 99
classes and interfaces, while in the FO version we counted
60 feature classes and 175 virtual classes. So by the size
and the number of classes FO design seems to be more
complicated. However, in order to evaluate complexity we
should also analyze the dependencies between modules. In
the object-oriented design most of classes are interdepen-

3 The implementation of the game with CAESARJ is available for download
at http://caesarj.org/index.php/Caesar/Examples
4 The total numbers of lines are correspondingly 7,956 and 12,504.

dent, i.e. each of these classes directly or indirectly depends
on all the others. The cause of these cyclic dependencies is
that most of the relationships of the game objects are bidi-
rectional, and according the object-oriented design princi-
ples most of functionality is located in the classes of the
game objects. In the FO design the picture is much better,
because dependencies between features are strictly acyclic,
which means that if feature A depends on feature B, there is
no dependency in the opposite direction, neither directly nor
indirectly. The acyclic design is in fact enforced, because we
model feature dependencies by class inheritance relations.
Besides, the dependencies are acyclic also at the level of
packages, as can be seen in Fig. 2.

Understandability. The high level design has a clear
structure, which corresponds to the structure of the speci-
fication. Because of this it is easier to understand the soft-
ware. For example, if we want to understand how creature
movement is implemented, we can at first read about it in
specification and then locate all related functionality in the
movement package. The classes of this package describing
domain objects contain only the attributes and methods that
are relevant to this feature. In order to understand how the
feature works we need to study only the feature and the fea-
tures it depends upon. We can even combine these features
into a working application and experiment with their behav-
ior in isolation from other features. However, we found that
it is not intuitive that feature classes can use the functionality
of transitively inherited features.

Testability. The advantage of the CAESARJ design for
testing is that features can be tested independently from
other unrelated features. For each feature group, such as
Items and Battle, we defined a minimal application that con-
sists only of the features of this group and their dependencies
and used this application to test these features. In object-
oriented applications test cases are often organized by use
cases, which by their nature are similar to features, but such
test cases usually depend upon much more source code than
they actually need to test the corresponding functionality.

Maintainability. The improved traceability of require-
ments in the implementation also helped for bug fixing, be-
cause it was easier to locate the cause of the bug. A big ad-
vantage for maintainability is also the clear acyclic depen-
dencies between features, because it is easy to identify what
features can be evolved independently from each other and
what is potential impact of the change in a certain feature.
However, our experience with maintainability was mainly
limited to the stabilization of the game and small improve-
ments.

Tool Support. Tool support is very important for efficient
software development. At the time when the case study was
developed we provided very limited tool support: integra-
tion of CAESARJ compiler and source editor in the Eclipse
platform, outline and inheritance hierarchy views, as well
as a rudimentary support for debugging. The modular type

5 2007/9/15

checking provided by compiler and the debugging support
have proved to be essential for enabling FOP with CAESARJ.
However, for efficient programming there was also a strong
need for navigation and search in the structure of the source
code, code completion and automatic generation of imports.
Another problem, was that CAESARJ compiler did not sup-
port incremental compilation, so even after a small change it
took about a minute to recompile the project.

6. Conclusions
The results of the case study presented in the paper have
shown that feature-oriented modularization not only in-
creases reusability and extensibility of software, but also
brings the implementation closer to the requirements and
can improve the structure of dependencies in the program.
As a consequence, the software becomes easier to under-
stand, to test and to maintain. However, an efficient FOP
requires an appropriate tool support: a compiler that sup-
ports incremental compilation and modular type checking, a
debugger and a rich IDE support.

During development of the case study we elaborated
methodology for feature modularization with virtual classes
and mixin composition, for identification and modulariza-
tion of features at the level of requirements and for refactor-
ing from an object-oriented to a feature-oriented design in
CAESARJ.

An important advantage of virtual classes is that their
semantics support modular type checking and incremen-
tal compilation. The explicit relationships between the fea-
ture classes help to undestand the dependencies in the soft-
ware, and the acyclicity of the inheritance graph enforce
acyclic module structure. The mixin linearization semantics,
in which classes inherited over multiple paths are shared,
correspond to the intuition of dependencies between fea-
tures. The main limitation of feature modularization with
virtual classes and mixin composition is that it is a static
variation mechanism, and thus it is not possible to turn on
and off separate features at runtime.

7. Acknowledgments
We would like to thank the students who implemented the
case study: Sacha Droste, Jörg Meyer, Lukas Pruschke and
Carsten Schoger. The work was supported by the projects
TopPrax (01|SC04A) and AOSD-Europe NoE (IST-2-004349).

References
[1] S. Apel, T. Leich, and G. Saake. Aspectual mixin layers:

aspects and features in concert. In Proceedings of ICSE’06,
pages 122–131, New York, NY, USA, 2006. ACM Press.

[2] S. Apel, M. Rosenmueller, T. Leich, and G. Saake. Fea-
tureC++: On the symbiosis of feature-oriented and aspect-
oriented programming. In Proceedings of GPCE’05, 2005.

[3] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of CaesarJ. Transactions on AOSD I, LNCS,
3880:135 – 173, 2006.

[4] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford,
and P. T. Withington. A monotonic superclass linearization
for dylan. In Proceedings of OOPSLA’96, pages 69–82. ACM
Press, 1996.

[5] D. Batory. Feature models, grammars, and propositional
formulas. In Proceedings of SPLC’05, pages 7–20, 2005.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. In Proceedings of ICSE ’03, pages 187–197,
Washington, DC, USA, 2003. IEEE Computer Society.

[7] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci,
and M. Sirkin. The GenVoca model of software-system
generators. IEEE Software, 11(5):89–94, 1994.

[8] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings OOPSLA/ECOOP’90. ACM SIGPLAN Notices
25(10), pages 303–311. ACM, 1990.

[9] J. Bredereke. On feature orientation and on requirements
encapsulation using families of requirements. In Objects,
Agents, and Features, pages 26–44, 2003.

[10] E. Ernst. gbeta - a language with virtual attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD
thesis, Department of Computer Science, University of
Aarhus, Denmark, 1999.

[11] E. Ernst. Propagating class and method combination. In
Proceedings ECOOP’99, LNCS 1628, pages 67–91, Lisboa,
Portugal, June 1999. Springer-Verlag.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In Proceedings of
ECOOP ’01, 2001.

[13] S. R. Palmer and M. Felsing. A Practical Guide to Feature-
Driven Development. Pearson Education, 2001.

[14] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In Proceedings of ECOOP’97, pages 419–443, 1997.

[15] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin layers. In Proceedings of ECOOP’98, pages 550–
570. Springer-Verlag LNCS 1445, 1998.

[16] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proceedings of GPCE’07,
2007.

[17] S. Trujillo, D. Batory, and O. Diaz. Feature refactoring
a multi-representation program into a product line. In
Proceedings of GPCE ’06, pages 191–200, New York, NY,
USA, 2006. ACM Press.

[18] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A
conceptual basis for feature engineering. J. Syst. Softw.,
49(1):3–15, 1999.

6 2007/9/15

